传热学典型简答题 - 下载本文

由于壁面粘滞力影响逐渐向流体内部传递,边界层厚度逐渐增加,在达到Xc距离(临界长度Xc由Rec来确定)之前,边界层中流体的流动为层流,称为层流边界层,在层流边界层截面上的流速分布,温度分布近似一条抛物线,如图所示。在Xc之后,随着边界层厚度δ的增加,边界层流动转为紊流称为紊流边界层,即使在紊流边界层中,紧贴着壁面的薄层流体,由于粘滞力大,流动仍维持层流状态,此极薄层为层流底层δt,在紊流边界层截面上的速度分布和温度分布在层流底层部分较陡斜,近于直线,而底层以外区域变化趋于平缓。

二、定量计算

主要包括:类比率的应用;相似原理的应用;外掠平板的强制对流换热。

1、空气以40m/s的速度流过长宽均为0.2m的薄板,tf=20℃,tw=120℃,实测空气掠过此板上下两表面时的摩擦力为0.075N,试计算此板与空气间的换热量(设此板仍作为无限宽的平板处理,不计宽度z方向的变化)。

解应用柯尔朋类比律

其中ρ、cp用定性温度查教材附录2(P309)“干空气的热物理性质”确定。

,,

,带入上式

,得

换热量:,

2、在相似理论指导下进行实验,研究空气在长圆管内稳态受迫对流换热的规律,请问:(1)本项实验将涉及哪几个相似准则?实验中应直接测量哪些参数才能得到所涉及的准则数据?(3)现通过实验并经初步计算得到的数据如下表所示,试计算各试验点Re数及Nu数?(4)实验点1、2、3、4的现象是否相似?(5)将实验点标绘在lgNu及lgRe图上。(6)可用什么形式的准则方程式整理这些数据?并确定准则方程式中的系数。(7)现有另一根长圆管,d=80mm,管内空气速度28.9m/s,tw=150℃;tf=50℃,试确定管内换热现象与上述表中哪个现象是相似的?并用上表实验结果确定此管内的表面传热系数。(8)又一未知流体的换热现象,已知其热扩散率a=30.2×10m/s,λ=0.0305W/(mK);ν=21.09×10m/s;d=65mm,管

-6

2

-6

2

内流速23m/s,它是否与上表中的实验现象相似?是否可以用上表实验结果计算它的表面传热系数?为什么?如果能用,请计算其Nu数和表面传热系数?

解:㈠定性温度为为tf

⑴由于是空气在长管内稳态受迫对流换热,所以涉及到的相似准则是Re和Nu。

⑵由Re=ud/ν、Nu=hd/λ、Φ=IU及Φ=hA(tw-tf)知道需要测量的物理量有u、d、A=πdL、tf、tf、I、U。

⑶计算结果见下表:(1-4:tf=10℃;5:tf=50℃,定性温度为tf)

现象序号 1 2 3 4 5

tw ℃ 30 50 70 90 150

2.83 ×10-2

6

17.95 ×10-6 21.09 ×10-6

80 ×10-3 65 ×10-3

23

λ

ν

2

d m 50 ×10-3

u m/s 3.01 31.5 57.5 106 28.9

h W/m℃ 15 28248.6 60028.2 126765.5

2

Re lgRe 10628.5 4.02 62.74 4.45 114.5 4.78 211.2 5.10 128802.2

Nu lgNu 29.88 1.48

W/m℃ 2.51 ×10-2

m/s 14.16 ×10-6

1.80

2.06

2.32

3.05 ×10-2

70886.7

⑷由于

⑸图略(参考教材P140图5-26)

,所以现象1-4不相似。

⑹准则方程式形式为根据现象1-4数据,利用最小二乘法(也可以用图解法确定C和n),

)中的C和n如下:

确定(

所以准则方程式为

,其中

⑺因现象5雷诺数(Re=128802.2)与现象1-4雷诺数均不相等,所以现象5不与现象1-4均不相似;且由于其雷诺数已超出了现象1-4的实验范围,所以无法用上述实验结果确定现象5的表面换热系数。 ⑻因现象6雷诺数(Re=70886.7)与现象1-4雷诺数均不相等,所以现象6不与现象1-4均不相似;但由于其雷诺数处于现象1-4的实验范围,所以可以用上述实验结果确定现象6的表面换热系数,方法如下:

3、温度为50℃,压力为1.01325×10Pa的空气,平行掠过一块表面温度为100℃的平板上表面,平板下表面绝热。平板沿流动方向长度为0.2m,宽度为0.1m。按平板长度计算的Re数为4×l0。试确定: (1)平板表面与空气间的表面传热系数和传热量;

(2)如果空气流速增加一倍,压力增加到10.1325×10Pa,平板表面与空气的表面传热系数和传热量。 解:本题为空气外掠平板强制对流换热问题。

5

4

5

(1)由于Re=4×104<5×105,属层流状态。故:

空气定性温度:

空气的物性参数为

,Pr=0.70

故:

W/(m.K)

2

散热量

W

(2)若流速增加一倍,,压力,则,

而:,故:

,属湍流。

所以:

据教材式(5—42b)

=961

W/(m·K)

2

散热量:三、本章提要

W

以下摘自赵镇南著,高等教育出版社,出版日期:2002年7月第1版《传热学》

1、对流换热是一种非常复杂的物理现象。它的热流速率方程即牛顿冷却公式。对流换热问题的求解归根结底围绕着如何得到各种不同情况下的表面传热系数,它有局部值和平均值之分。

影响单相流体对流换热强弱的主要因素有流体的流动状态、发生流动的原因、流体的各项有关物性以及表面的几何形状等。

2、边界层理论在研究对流换热现象时扮演了极重要的角色。边界层概念归根结底就是从数量级的观点出发,忽略主流中速度和过余温度1%的差异。速度边界层和温度边界层的基本观点可以概括地总结为以下的基本内容(针对沿平壁的外部流动):

(1)速度从零变化到几乎等于主论速度主要发生在紧贴壁面的薄层内:壁面上具有速度梯度的最大值;在壁面法线方向上,讨以把流场划分成边界层区和主流区,主流可视为等速、无粘性的理想流体;壁面法线方向上不存在压力梯度;在沿壁曲方向上流体依次为层流、过渡流和湍流状态。

(2)温度的变化与速度相似(但必须以过余温度,而不是来流温度作为衡量的基准),过余温度99%的变化发生在薄薄的热边界层内;壁面上具有最大的过余温度梯度(该值即代表Nu数);在壁面的法线方向上将流场分为热边界层区和等温的主流区,流体与壁面之间的热量传递仅发生在热边界层区里。

3、二维、低速、常物性、无体积力、无内热源的边界层对流换热微分方程组是:

它们是通过对流场中的任意流体微元分别作质量、动量和能量平衡,并针对高雷诺数按照普朗特的边界层理论进行简化以后得出来的。而对流换热过程微分方程则揭示了流体与壁面之间对流换热的物理本质。

4、边界层对流换热问题的主要求解方法有分析解、实验解、类比方法以及数值解法。

分析解:包括精确解(也叫相似解)和积分方程近似解。虽只能在若干假设条件下求得一些简单问题的解,但是作为经典方法,它对正确认识对流换热的基本规律仍起着重要的作用。

实验解:实验方法始终是解决工程对流换热问题不可缺少的基本手段。它也是分析解或数值解唯一可靠的检验手段,对求不出理论解的问题,更要靠它来获得所需要的基本规律和数据。实验解方法应当在相似理论的指导下进行才能得到正确有效的结果。

类比方法:建立在流体动量与热量传递规律的相似性上,无论层流还是湍流,只要流动阻力来自流体的分子粘性和湍流“粘性”,均可以运用类比关系通过摩擦系数直接得到对流换热的表面传热系数。对于外部流动和内部流动,最主要的两个类比率关系式是

;适用条件:;;适用条件:

数值解:通过对边界层微分方程组进行离散化处理求得各节点上流体的速度、温度和压力参数的数值求解方法。由于动量方程中存在非线性的对流项及压力梯度项,使对流换热的数值处理比导热复杂很多。 5、相似理论与相似准则数相似原理是指导用实验方法研究包括对流换热在内的很多工程技术问题的方法理论。它的主要内容可以概括为相似三定理,它们分别回答了实验研究中遇到的四个主要问题: (1)彼此相似的现象,其对应点的同名相似准则数相等。

实验中模型应该如何选取,应该测量哪些量?模型应保证与实物物理现象相似,应测量相似准则数中所包含的各个物理量,其中的物性由定性温度确定。

(2)描述物理过程的微分方程积分结果可以用相似准则数之间的函数关系来表示。 实验结果应该怎么表示?应该用准则数关联式的形式来表示。

(3)凡同类现象,若同名已定准则数相等.且单值性条件相似,那么这两个现象必定相似。 实验结果可以应用到哪些范围?实验结果可用于所有与实验状态保持相似的同类对流换热问题中。 下表汇总列出了本教材以及传热文献中最经常遇到的所有相似准则数,它们的定义和物理解释,供读者在学习和工作中参考。